People in a conference room having a discussion

Dies ist der zweite einer Reihe von Beiträgen zum Thema Datenmanagement. Lesen Sie hier den ersten Beitrag der Serie. 

Heute konzentrieren wir uns auf das Konzept der Data Governance und seine Bedeutung bei der Förderung des Ziels, Daten in einen Vermögenswert einer Organisation zu verwandeln. 

Hier ist eine einfache Definition für Data Governance, die ich nützlich finde: 

„Data Governance ist ein multidisziplinärer Ansatz zur Erstellung und Aufrechterhaltung von Standards, die Daten in großem Umfang verwalten. Es hilft Unternehmen, Datenquellen, Qualität und Sicherheit in allen Phasen der Datenpipeline zu bewerten…“ 

 – Lauren Maffeo, „Designing Data Governance from the Ground Up (Pragmatic Bookshelf, 2023) 
Eine alternative Definition liefert Laura Sebastian-Coleman in „Navigating the Labyrinth“: 

„Data Governance (DG) ist definiert als die Ausübung von Autorität und Kontrolle (z. B. Planung, Überwachung und Durchsetzung) über die Verwaltung von Datenbeständen.“ 

„Daten in großem Maßstab verwalten“ geht auf die ganze „Daseinsberechtigung“ des Datenmanagements zurück, die ich in meinem vorherigen Beitrag erwähnt habe. 

Unter Verwendung dieses Definitionsrahmens komme ich mit einer möglicherweise kontroversen Aussage zu meinem Hauptpunkt für diesen Beitrag: Jede Organisation, unabhängig von ihrer Größe, betreibt eine Art Data Governance, ob sie sich dessen bewusst ist oder nicht. 

Lesen Sie nachfolgend weiter in dem Originalbeitrag, der zuerst im Blog des CCC erschienen ist. 

 

Often, the governance is *ad hoc* and informal, but no organization that stores any amount of data as part of its business can avoid some kind of data governance, no matter how casual it may seem to be. That data governance may be done by a single person trying to keep a dataset up-to-date and free of errors, but that is still a kind of data governance. 

Here are some signs that you are already doing data governance work, but don’t recognize it as a formal discipline: staff maintains list of customers and does its best to keep the list up-to-date; staff consults authoritative sources to validate data in spreadsheets; and staff uses data to make decisions, but is unsure if the data is valid for the conclusions they draw with it. 

What I want to discuss in this post is the need for an organization to have a formal data governance program, to replace the informal work it is already doing. 

Data governance is the term we use to describe the process that shepherds all other data management efforts in an organization. It is foundational. Data governance sets the rules for all uses of data within an organization. 

The following is a list of signs that your organization may need a formal data governance effort: 

  • You maintain more than one copy of the same data because employees from different teams do not necessarily discuss with each other what they are doing. 
  • Your data are full of errors and, while there is a desire to correct those, no one has a plan for how to improve data quality. 
  • Staff disagree on the meaning of important data elements used across the company. 

With a formal data governance program, all the issues I mention above become solvable. In particular, a data governance program bolsters the company’s ability to use data effectively for decision making. 

By building a data governance program, an organization systematically develops the tools needed to identify bad data, data provenance, proper representation of data licensing, and so on. Identifying the root causes of those data issues leads to programs that can result in the effective and permanent remediation of the related data problems. An organization’s reputation is strengthened if customers, vendors, and partners recognize that the organization’s data is of high quality. There is nothing more embarrassing than client reports of data flaws in our applications. 

Today more companies are looking for ways that machine learning (ML) can help automate and further existing process automation programs. The only way such programs can be successful is if the data used to train the ML models is of high quality. Ensuring that an organization’s data quality is high is one of the primary goals of a data governance program. 

The very nature of a data governance effort opens lines of communication among various users of an organization’s data. This has the effect of removing the barriers or silos between departments and business units. 

One tenet of a data governance program is the establishment of a data governance council. This team’s composition should be cross-departmental and cross-disciplinary. Sitting on a data governance council is often the first time some members of other departments learn how different departments within the same company use the same (or similar) data. 

Data governance can clearly help with problems like those we discussed in the preceding paragraphs. But data governance has a preventative function as well as a corrective one. 

It is through data governance that an organization can ensure that its use of data conforms to various regulations. No company wants to violate one of the European Union’s [GDPR](https://gdpr.eu/what-is-gdpr/) requirements (just ask [Google](https://www.bbc.com/news/technology-46944696), for instance). 

As bad as violating regulatory requirements can be, the loss of reputation that comes from data security violations is worse. Think of all the occasions when we have heard that a company where we shop has been hacked and we have had our personal data stolen. I know that when I get a letter from such a company offering to pay for a year of identity theft protection, I feel that the company did not handle my personal information properly. Data governance, along with robust security practices, can prevent such breaches. 

But let us be real. Some data governance efforts miss the mark or fail entirely. As consultant Nicola Askham wrote, “[one] reason many data governance initiatives fail is a lack of support at a management level. If senior management does not buy into the benefits of data governance and only sees the associated costs, an initiative will almost never succeed.” 

Data governance therefore is not only a tool for managing data in ways that optimizes the value of data, but it is an invaluable tool for managing the risks associated with all the data that companies collect today. 

Author: RD

RightsDirect, eine Tochtergesellschaft von Copyright Clearance Center, bietet fortschrittliche Informations- und Datenintegrationslösungen für Organisationen in ganz Europa und Asien. Als Pionier der freiwilligen kollektiven Lizenzierung ist CCC ein führender Anbieter von Informationslösungen für Organisationen auf der ganzen Welt. Mit umfassender Fachkompetenz in den Bereichen Urheberrecht, Technologie, Fachinhalte, PIDs, FAIR-Datenprinzipien, Metadaten und mehr arbeitet CCC daran Urheberrechte zu stärken, den Austausch von Wissen zu beschleunigen und Innovationen voranzutreiben. CCC und seine Tochtergesellschaft RightsDirect unterstützen Unternehmen dabei, die Leistungsfähigkeit von Daten, KI und maschinellem Lernen zu nutzen, um strategische Entscheidungen zu treffen, ihr Geschäft auszubauen und Wettbewerbsvorteile zu erlangen.